Don't Frack Me Up

By Marin Katusa, Casey Research

To many walking the planet, fracking has a seriously bad reputation. Thanks to hyperbole and misinformation, fracking opponents have convinced a lot of people that the operators who drill and then hydraulically fracture underground rock layers thumb their noses at and even hate the environment.
Anti-fracking claims may be twists on reality – for example, that a legislative loophole makes fracking exempt from the America's Safe Drinking Water Act, when really this federal legislation never regulated fracking because it is a state concern. Then there's the completely absurd, such as the idea that frac operators are allowed to and regularly do inject frac fluids directly into underground water supplies.
We decided to set the record straight by using facts, not playing on emotion like many of the frac-tivists do. It's important because unconventional oil and gas constitute an increasingly pivotal part of the world's energy scene. In the United States, where shale gas abounds but imported energy rules the day, this is especially true.

America's shale deposits hold a heck of a lot of gas. According to the United States Geological Survey, the Marcellus Shale alone is home to 84 trillion cubic feet (TCF) of technically recoverable natural gas. Estimates of the amount of recoverable gas contained in all of America's shale basins range as high as 3,000 TCF.

To access this gas, fluids made of water, sand, and chemicals to increase lubrication, inhibit corrosion of equipment, and possessing other qualities are pumped into the shale formation. When the pressure from the fluids exceeds the strength of the rocks, the rock fractures, and in a demonstration of might by the mighty small, the granules of sand prop the fractures open. Once the fracturing is completed, the internal pressure from the formation pushes the injected fluids to the surface again.

Frac wells are only open to the surrounding rock at the depth of the target formation. Starting at 250 feet (76 meters) or thereabouts above the producing interval – it varies a bit from state to state – the production casing must be cemented. This graphic, borrowed from the Texas Oil and Gas Association, shows what the procedure entails.


Casings are the liners that isolate the inside of the well from the surrounding rock, and from any
Casings are the liners that isolate the inside of the well from the surrounding rock, and from any water that might be contained in that rock. The surface casing is the first line of defense, while the production casing provides a second layer of protection for the groundwater.

Casings do require proper cementation to be effective: the cement seals the annular spaces between successive casing layers to provide a barrier to vertical and horizontal fluid movement. A poor cementation job was a significant factor in the Deepwater Horizon well blowout, and that transpired because deepwater regulations were insufficient. On land, however, cementation is highly regulated, and inspections of wells in progress, announced and unannounced, are common.

Unlike deepwater drilling, fracking is not new. Nor is fracking specific to natural gas or to the United States. Drillers frac many thousands of oil and gas wells around the world every year. In America, oil and gas producers have been using hydraulic fracturing since at least the 1940s to enhance recoveries from older oil wells and to access the oil in tight reservoirs, such as the Bakken.

Then there's shale gas, a domestic source of energy for North America that's much more reliable and secure than the millions of barrels of oil that come from places like Nigeria, Venezuela, Iraq, Angola, and Algeria every day. And as we've said, accessing that gas using hydraulic fracturing is much less dangerous and damaging than many people think.

Read the full article here.

Comments

Popular posts from this blog

Kyle Bass On Rehypothecation And Other Keynesian Endgame Scenarios

Jim Sinclair - CB’s Trying to Keep Gold from Rising Violently